# 1 Loi de probabilité

Il s'agit de construire une **structure mathématique** qui permet de repérer des situations identiques et d'avoir une **méthode rigoureuse** dans un domaine où notre intuition nous conduit souvent à la solution sans apporter de justifications satisfaisantes.

#### 1.1 Définitions

**Expérience aléatoire :** Protocole précis dont on ne peut prévoir l'issue mais qui peut être vérifiée.

## Exemples :

- Lancer un dé à 6 faces sur une piste de jeu.
- Lancer une pièce de monnaie.
- Distribuer 5 cartes à un joueur avec un jeu de 32 cartes.
- Poser une question à un lycéen choisi au hasard.

**Univers**: Ensemble des issues possibles d'une expérience aléatoire. On le note :  $\Omega$ . On a alors :  $\Omega = \{e_1, e_2, \dots, e_n\}$ 

## Exemples :

- Il y a 6 issues possibles pour un dé :  $\Omega = \{1,2,3,4,5,6\}$ .
- Il y a 2 issues possibles pour une pièce de monnaie :  $\Omega = \{F;P\}$
- Il y a 201 376 mains possibles de 5 cartes pour un jeu de 32 cartes
- Il y a 1 200 lycéens dans l'échantillon qui peuvent être interroger.

**Événement :** Sous ensemble de l'ensemble univers  $\Omega$ . On le note avec une majuscule.

#### Exemples :

- A : « Obtenir un nombre pair avec un dé. » d'où  $A = \{2,4,6\}$
- B : « Obtenir "face" avec une pièce. » d'où  $B = \{F\}$
- C: « Obtenir 2 cœurs dans une main de cinq cartes. »
- D : « Obtenir un lycéen âgé de moins de 17 ans. »

**Événement élémentaire :** Événement qui ne contient qu'un seul élément. On le note alors  $e_i$ .

#### Exemples :

- e<sub>6</sub> : « Obtenir un "six" avec un dé »
- e<sub>i</sub> : « Interroger le lycéen i parmi les 1 200 lycéens »

**Événement certain :** C'est l'univers,  $\Omega$ .

Événement impossible C'est l'ensemble vide, Ø.

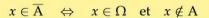
# 1.2 Opérations sur les événements

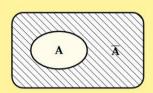
L'étude des probabilités fait appel à la logique mathématique : il s'agit d'analyser, dans un texte les éléments qui serviront aux calculs de probabilités. Les mots à repérer sont les conjonctions "et", "ou", et la négation "ne... pas" La logique mathématique fait aux opérations sur les ensembles. On définit les opérations élémentaires suivantes : le complémentaire, l'intersection et l'union. D'autres opérations peuvent se décomposer à l'aide de ces trois opérations de base.

#### 1.2.1 Événement contraire

Définition 1: L'événement contraire

 $\frac{d'un}{A}$  événement A est l'événement noté  $\overline{A}$  composé des éléments de  $\Omega$  qui ne sont pas dans A.



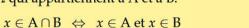


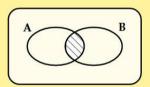
Exemple: On lance un dé parfait. On appelle A l'événement « obtenir un 6 ». On a donc l'événement contraire  $\overline{A}$  l'événement « ne pas obtenir 6 ».

#### 1.2.2 Intersection de deux événements

Définition 2 : L'intersection de

deux événements A et B est l'événement noté  $A\cap B$  composé des éléments de  $\Omega$  qui appartiennent à A et à B.





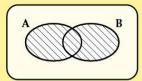
Les événements A et B sont incompatibles si et seulement si :  $A \cap B = \emptyset$ 

Exemple: On tire deux cartes dans un jeu de 32 cartes. Soient les événements

- A: « obtenir deux cœurs »
- B: « obtenir au moins une dame »

L'événement  $A \cap B$  est donc : « obtenir la dame de cœur et un autre cœur »

**Définition 3** : L'union de deux événements A et B est l'événement noté  $A \cup B$  composé des éléments de  $\Omega$  qui appartiennent à A ou (non exclusif) à B.



$$x \in A \cup B \Leftrightarrow x \in A \text{ ou } x \in B$$

A et  $\overline{A}$  forment une partition de  $\Omega$  car :  $A \cup \overline{A} = \Omega$  et  $A \cap \overline{A} = \emptyset$ 

Exemple: On tire deux cartes dans un jeu de 32 cartes. Soient les événements

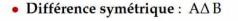
- A : « obtenir deux cartes de même valeur »
- B: « obtenir un roi »

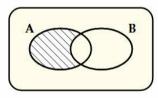
L'événement  $A \cup B$  est donc : « obtenir deux cartes de même valeur ou un roi et une autre carte de valeur différente »

#### 1.2.4 Autres opérations

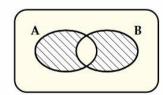
Les opérations peuvent se définir à l'aide du complémentaire, de l'intersection et de l'union de deux ensembles.

Différence : A − B







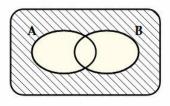


$$x \in A\Delta B \Leftrightarrow (A \cap \overline{B}) \cup (\overline{A} \cap B)$$

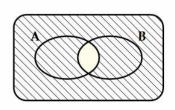
## 1.2.5 Lois De Morgan

• non(A ou B) = non(A) et non(B)





$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$



$$\overline{A\cap B}=\overline{A}\cup\overline{B}$$

**Remarque**: À l'aide des ces égalités, on pourrait par exemple définir l'union à l'aide du complémentaire et de l'intersection.

$$A \cup B = \overline{\overline{A \cup B}} = \overline{\overline{A} \cap \overline{B}}$$

On s'aperçoit que deux opérations, le complémentaire et l'intersection, sont suffisantes pour définir les autres.

#### 1.3 Probabilité

**Définition** 4 : On appelle loi de probabilité sur un ensemble  $\Omega$ , la fonction p à valeur dans [0;1] définie par les conditions suivantes :

- $p(\Omega) = 1$
- Si A et B sont incompatibles alors  $p(A \cup B) = p(A) + p(B)$

Propriété 1 : À partir de cette définition, on peut déduire :

- 1)  $p(e_1) + p(e_2) + \cdots + p(e_n) = \sum_{i=1}^{n} p(e_i) = 1$
- $2) \ p(\varnothing) = 0$
- 3) Pour tous événements A et B, on a les relations :
  - a)  $p(\overline{A}) = 1 P(A)$
  - b)  $p(A \cup B) = p(A) + p(B) p(A \cap B)$

#### Exemples :

1) On lance un dé truqué. Après un relevé statistique, on a pu déterminer que les probabilités d'apparition de chaque face sont telles que :

$$p(1) = p(2) = p(3) = p(4) = p(5)$$
 et  $p(6) = 3 \times p(1)$ 

Calculer la probabilité d'apparition de chaque face

Il n'y a que deux probabilités à déterminer : p(1) et p(6). On a :

$$\begin{cases} p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1 \\ p(6) = 3 \times p(1) \end{cases} \Leftrightarrow \begin{cases} 8 p(1) = 1 \\ p(6) = 3 \times p(1) \end{cases}$$

On obtient donc:  $p(1) = \frac{1}{8}$  et  $p(6) = \frac{3}{8}$ .

2) À l'aide des probabilités suivantes sur les événements A et B, calculer  $p(\overline{B})$ 

$$p(A) = 0.3$$
,  $p(A \cup B) = 0.7$  et  $p(A \cap B) = 0.2$ 

On calcule d'abord P(B):

$$p(A \cup B) = p(A) + p(B) - p(A \cap B) \Leftrightarrow p(B) = p(A \cup B) - p(A) + p(A \cap B)$$

On obtient alors : p(B) = 0, 7 - 0, 3 + 0, 2 = 0, 6

On calcule ensuite :  $p(\overline{B}) = 1 - p(B) = 1 - 0.6 = 0.4$ 

# 1.4 Loi équiprobable

**Définition** S: Une loi de probabilité est **équiprobable** si chaque événement élémentaire  $e_i$  a la même probabilité d'apparition.

$$\Omega = \{e_1, e_2, \dots, e_n\}: \quad \forall i \in (1, 2, \dots, n) \quad \text{on a:} \quad p(e_i) = \frac{1}{n}.$$

Exemple : Pour un dé équilibré, chaque face a une probabilité de  $\frac{1}{6}$  d'apparition.

<u>Théorème</u> 1 : Dans une loi équiprobable, la probabilité de l'événement A vérifie :

$$p(A) = \frac{\text{nombre d'éléments de A}}{\text{nombre d'éléments de }\Omega} = \frac{\text{nombre de cas favorables à A}}{\text{nombre de cas possibles}}$$

**Remarque :** Lorsque la loi de probabilité est équiprobable, le calcul de probabilités revient à un problème de dénombrement. On peut alors utiliser pour dénombrer les différents cas, un arbre, un tableau double entrée, un diagramme de Venn, une liste,...

⚠ Historiquement l'équiprobabilité a été le seul cas envisagé. Cependant le paradoxe du duc de Toscane montre que ce n'est pas toujours le cas.

**Exemple:** Une urne contient 6 boules : 4 rouges (numérotées de 1 à 4) et 2 bleues (numérotées 5 et 6). On tire simultanément et au hasard deux boules de l'urne et on note sa couleur. Calculer la probabilité des événements suivants :

R: « tirer deux boules rouges »

C « tirer deux boules de même couleur »

On numérote les boules pour se retrouver dans un cas d'équiprobabilité. En effet comme il n'y a pas le même nombre de boules rouge et de boules bleues, la probabilité de tirer une boule rouge n'est pas la même que de tirer une boule bleue.

On établit la liste des tirages possibles. On cherche ici des paires (pas d'ordre).

Pour avoir R il ne faut utiliser que les numéros de 1 à 4.

Il y a donc: 
$$3+2+1=6$$
 choix. On a donc:  $p(R)=\frac{6}{15}=\frac{2}{5}$ 

Soit B: « obtenir deux boules bleues ».

Il n'y a qu'un choix possible, donc  $p(B) = \frac{1}{15}$ 

On a alors: 
$$p(C) = p(R \cup B) = p(R) + p(B) = \frac{6}{15} + \frac{1}{15} = \frac{7}{15}$$

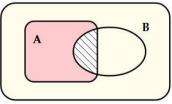
# 2 Probabilité conditionnelle

#### 2.1 Définition

Le but de ce paragraphe est d'étudier la probabilité d'un événement B conditionné par un événement A.

**Définition** 6: Lorsque  $p(A) \neq 0$ , on note  $p_A(B)$  la probabilité d'avoir l'événement B sachant que l'événement A est réalisé. On a alors la relation suivante :

$$p_{\mathbf{A}}(\mathbf{B}) = \frac{p(\mathbf{A} \cap \mathbf{B})}{p(\mathbf{A})}$$

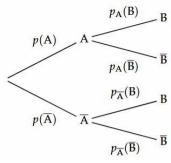


La probabilité de B sachant A correspond à la part de B dans A, c'est à dire la part hachurée dans l'ensemble A

On a alors : 
$$p_A(B) = \frac{\text{Nbre d'éléments communs à A et B}}{\text{Nbre d'élément de A}} = \frac{p(A \cap B)}{p(A)}$$

# 2.2 Représentation par un arbre pondéré

Soient deux événements A et B. On peut représenter par un arbre pondéré les probabilités suivantes lorsque l'on connaît les probabilités de B ou  $\overline{B}$  lorsque A est réalisé.



**Exemple:** Dans un lycée 54 % des élèves sont des filles dont 72 % sont externes. De plus, 76 % des garçons sont externes. On choisit un élève au hasard.

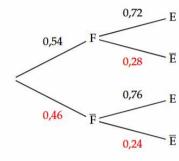
On pose:

- F : « l'élève choisi est une fille »
- E : « l'élève choisi est externe »

On traduit les données à l'aide de probabilités :

$$p(F) = 0.54$$
,  $p_F(E) = 0.72$ ,  $p_{\overline{F}}(E) = 0.76$ 

On obtient alors l'arbre ci-contre :



Propriété: Pour remplir et utiliser un arbre, on a les propriétés suivantes:

- Sur chaque branche de l'arbre, on écrit les probabilités correspondantes (attention pas de pourcentage).
- La somme des probabilités inscrites sur les branches issues d'un même nœud est égale à 1 (loi des nœuds).
- Le produit des probabilités inscrites sur chaque branche d'un chemin donne la probabilité de l'intersection des événements placés sur ce chemin. Par exemple la probabilité d'avoir une fille externe :

$$p(F) \times p_F(E) = p(F \cap E) = 0,54 \times 0,72 = 0,3888$$

• La probabilité d'un événement est la somme des probabilités des chemins qui aboutissent à cet événement. La probabilité d'avoir un élève externe :

$$p(E) = p(F \cap E) + p(G \cap E) = p(F) \times p_F(E) + p(G) \times p_G(E)$$
  
= 0,54 \times 0,72 + 0,46 \times 0,76 = 0,7384

**Autre exemple :** Dans un atelier, il y a 2 % de pièces défectueuses. On effectue un test pour savoir si on doit accepter ou refuser une pièce. On a observé que :

- Si la pièce est n'est pas défectueuse, elle est acceptée par ce test à 96 %.
- Si la pièce est défectueuse, elle est refusée par ce test à 97 %.

Quel est le pourcentage de retour client?

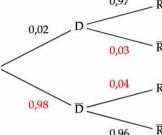
On appelle les événement suivants :

D: « la pièce est défectueuse »;

R: « la pièce est refusée ».

On construit l'arbre ci-contre

Retour client : probabilité qu'une pièce soit défectueuse et acceptée :



$$p(D \cap \overline{R}) = p(D) \times p_D(\overline{R}) = 0,02 \times 0,03 = 0,0006$$

On peut s'attendre à 0,06 % de retour client.

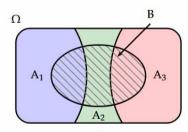
#### Théorème 2 : Probabilités totales

Soit  $A_1$ ,  $A_2$ , ...,  $A_n$  une partition de l'univers  $\Omega$  (ensembles deux à deux incompatibles et dont l'union forme  $\Omega$ ), alors, pour tout événement B, on a :

$$p(B) = p(A_1 \cap B) + p(A_2 \cap B) + \cdots + p(A_n \cap B)$$

Par exemple pour une partition de  $\Omega$  en trois ensembles :  $A_1$ ,  $A_2$  et  $A_3$ . On a alors :

$$p(B) = p(A_1 \cap B) + pA_2 \cap B) + p(A_3 \cap B).$$



**Remarque:** Dans la plupart des cas, on utilise la partition A et  $\overline{A}$ . Dans un arbre, le nombre n d'ensembles formant une partition donne le nombre de branches issues d'un nœud.

#### 2.3 Événements indépendants

Définition 7: Deux événements A et B sont indépendants si et seulement si :

$$p(A \cap B) = p(A) \times p(B)$$
 ou lorsque  $p(A) \neq 0$   $p_A(B) = p(B)$ 

Exemple: Une association de 96 membres propose différentes activités à ses adhérents dont l'aviron et le badminton. 12 membres s'inscrivent pour l'aviron, 32 pour le badminton dont 4 pour les deux.

On prend au hasard la fiche d'un adhérent.

On note A et B les événements :

- A « l'adhérent est inscrit pour l'aviron »;
- B « l'adhérent est inscrit pour le badminton ».

Les événements A et B sont-ils indépendants? En est-il de même pour A et  $\overline{B}$ ?

On peut représenter les événements dans un tableau double entrée ci-contre

 A
 A
 A
 Total

 B
 4
 28
 32

 B
 8
 56
 64

 Total
 12
 84
 96

On calcule les probabilités suivantes :

$$p(A \cap B) = \frac{4}{96} = \frac{1}{24}$$

$$p(A) \times p(B) = \frac{12}{96} \times \frac{32}{96} = \frac{1}{8} \times \frac{1}{3} = \frac{1}{24}$$

 $p(A \cap B) = p(A) \times p(B)$ , les événements A et B sont donc indépendants.

De même : 
$$p(A \cap \overline{B}) = \frac{8}{96} = \frac{1}{12}$$
 et  $p(A) \times p(\overline{B}) = \frac{12}{96} \times \frac{64}{96} = \frac{1}{8} \times \frac{2}{3} = \frac{1}{12}$   $p(A \cap \overline{B}) = p(A) \times p(\overline{B})$ , les événements  $A$  et  $\overline{B}$  sont donc indépendants.

**Remarque:** On peut montrer que si A et B sont indépendants, alors il en est de même pour :  $(\overline{A} \text{ et B})$ ,  $(A \text{ et } \overline{B})$  et  $(\overline{A} \text{ et } \overline{B})$ .

Autre exemple: On lance deux fois de suite un dé bien équilibré. Justifier que les deux lancers sont des épreuves indépendantes.

Deux lancers de dé peut être assimilé à un tirage avec remise. À chaque lancer, l'ensemble des six valeurs sont remises en jeu sans interaction avec le lancer précédent. Ainsi on a autant de chance de faire un "6" au deuxième lancer quelque soit le résultat du premier.

# Le paradoxe du Grand Duc de Toscane

A la cour de Florence, de nombreux jeux de société étaient alors pratiqués. Parmi ceux-ci, l'un faisait intervenir la somme des numéros sortis lors du lancer de trois dés. Le Duc de Toscane, qui avait sans doute observé un grand nombre de parties de ce jeu, avait constaté que la somme 10 était obtenue légèrement plus souvent que la somme 9. Le paradoxe, que le Duc avait exposé à Galilée, réside dans le fait qu'il y a autant de façons d'écrire 10 que 9 comme sommes de trois entiers compris entre 1 et 6 :

$$10 = 6 + 3 + 1 = 6 + 2 + 2$$
  $9 = 6 + 2 + 1 = 5 + 3 + 1$   
 $= 5 + 4 + 1 = 5 + 3 + 2$   $= 5 + 2 + 2 = 4 + 4 + 1$   
 $= 4 + 4 + 2 = 4 + 3 + 3$   $= 4 + 3 + 2 = 3 + 3 + 3$   
(6 possibilités) (6 possibilités)

Le paradoxe vient du fait que les possibilités dénombrées par le Grand Duc ne sont pas équiprobables : une somme comme 3+3+3 a trois fois moins de chance d'être obtenue qu'une somme comme 5+2+2, et six fois mois qu'une somme comme 4+3+2. Plusieurs démarches permettent de calculer les probabilités d'obtenir une somme égale à 9 ou à 10 (cf. annexe) : on trouve respectivement  $\frac{25}{216}$  et  $\frac{27}{216}$ , soit 0,116 (environ) et 0,125 .

L'étude de ce paradoxe permet de se sensibiliser au problème du choix d'un univers sur lequel l'hypothèse d'équiprobabilité des issues puisse être admise ou non. Cette question est loin d'être évidente et sa résolution a d'ailleurs rencontré historiquement de sérieux atermoiements comme l'atteste l'article "croix ou pile", pourtant beaucoup plus tardif, de d'Alembert dans l'Encyclopédie (publiée entre 1751 et 1772).

Deux points de vue sont possibles qui conduisent à préciser ou modifier l'épreuve initiale :

- on considère que les 3 dés sont distinguables : les issues sont les 216 triplets d'entiers compris entre 1 et 6 et l'arbre de dénombrement ci-dessous donne les 25 "cas favorables" (voir ci-après) . . .
- on se ramène au cas de trois lancers successifs et indépendants : en portant la probabilité 1/6 sur toutes les flèches, l'arbre ci-dessous devient un arbre de probabilités ...