Sommes de Variables Aléatoires – Tale spé maths

A) Étude d'une variable aléatoire (Rappels)

1) étude d'un exemple

Exercice : On donne les 2 jeux suivants associés aux variables aléatoires X et Y :

Jeu N°1

x_i			0		3
$P(X=x_i)$	0,2	0,3	0,1	0,1	0,3

Quel est le jeu le plus intéressant ?

Jeu N°2

y_i	-3	-1	0	1	2
$P(Y=x_i)$	0,1	0,4	0,2	0,2	0,1

Justifier la réponse avec des calculs appropriés

2) Espérance mathématique

Définition: Soit X une variable aléatoire tel que $X(\Omega) = \{1; 2; 3; ...; n\}$;

l'espérance mathématique de X est le réel $E(X) = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$

Application: Dans le jeu n°1 on obtient

$$E(X) = (-5) \times 0,2 + (-1) \times 0,3 + 0 \times 0,1 + 1 \times 0,1 + 3 \times 0,3 = -0,3$$

Dans le jeu n°2 on obtient

$$E(Y) = (-3) \times 0,1 + (-1) \times 0,4 + 0 \times 0,2 + 1 \times 0,2 + 2 \times 0,1 = -0,3$$

3) Variance & écart-type

Définition: Soit X une variable aléatoire tel que $X(\Omega) = \{1, 2, 3, ..., n\}$;

- la variance de X est le réel positif $V(X) = \sum_{i=1}^{n} (x_i E(X))^2 \cdot P(X = x_i)$
- l'écart-type de X est le réel positif : $\sigma(X) = \sqrt{V(X)}$

Application: Dans le jeu n°1 on obtient

$$V(X) = (-5+0.3)^2 \times 0.2 + (-1+0.3)^2 \times 0.3 + (0+0.3)^2 \times 0.1 + \cdots + (1+0.3)^2 \times 0.1 + (3+0.3)^2 \times 0.3 = 8.01$$

donc on déduit que : $\sigma(X) = \sqrt{8,01} \approx 2,83$

Dans le jeu n°2 on obtient

$$V(Y) = (-3+0,3)^{2} \times 0,2 + (-1+0,3)^{2} \times 0,4 + (0+0,3)^{2} \times 0,2 + \cdots$$

$$\cdots + (1+0,3)^{2} \times 0,2 + (2+0,3)^{2} \times 0,1 = 1,81$$

donc on déduit que : $\sigma(X) = \sqrt{1,81} \approx 1,35$

Conclusion : le jeu n°1 paraît plus risqué que le jeu n°2

B) Étude de deux variables aléatoires

1) Analyse d'un exemple

Exercice : On pose *X* et *Y* les variables aléatoires définies par les lois suivantes

x_i	-4	1	20
$P(X=x_i)$	0,1	0,35	0,55

y_i	-2	5
$P(Y=y_i)$	0,27	0,73

- a) Soit Z la variable aléatoire définie par Z=X+Y. Quelles sont les valeurs prises par la variable aléatoire Z?
- b) Peut-on déterminer la loi de probabilité de Z à partir des données de l'énoncé ? Si oui, donner cette loi

solution: on a $X(\Omega) = \{-4; 1; 20\}$ et $Y(\Omega) = \{-2; 5\}$

 -4
 1
 20

 -2
 -6
 -1
 18

 5
 1
 6
 25

les valeurs possibles de
$$Z$$
 sont $Z(\Omega) = \{-6; -1; 1; 6; 18; 25\}$ (cf tableau ci-contre)

les probabilités liées à ces valeurs de Z sont :

$$p(Z=-6)=p((X=-4)\cap(Y=-2))=0,1\times0,27=0,027$$

$$p(Z=-1)=p((X=1)\cap(Y=-2))=0,35\times0,27=0,0945$$

$$p(Z=1)=p((X=-4)\cap(Y=5))=0,1\times0,73=0,073$$

$$p(Z=6)=p((X=1)\cap(Y=5))=0,35\times0,73=0,2555$$

$$p(Z=18)=p((X=20)\cap(Y=-2))=0.55\times0.27=0.1485$$

$$p(Z=25)=p((X=20)\cap(Y=5))=0.55\times0.73=0.4015$$

rque: on vérifie la validité de la loi de Z avec $\sum_{k \in Z(\Omega)} k \cdot P(Z=k) = 1$

Problème : que se passe-t-il si plusieurs valeurs de Z correspondent à des cas distincts de X et de Y ?

2) Étude de la variable aléatoire Z=X+Y

Définition: Soit X et Y deux variables aléatoires définies sur un univers fini Ω d'expérience aléatoire, qui prennent respectivement pour valeurs les réels x_i tels que $1 \le i \le n$ et y_i tels que $1 \le j \le m$, avec n et m entiers naturels. Alors si on pose Z=X+Y, on a:

- $Z(\Omega) = \{ x_i + y_i \mid 1 \le i \le n, 1 \le j \le m \} = \{ k_i / 0 \le i \le N \} \text{ où } N = n + m$
- $\forall k \in Z(\Omega)$, $P(Z=k) = P(X+Y=x_i+y_i) = P(\{k_i\})$

Théorème: Soit la variable aléatoire Z=X+Y où X et Y suivent des lois distinctes alors l'espérance mathématique de Z est E(X+Y)=E(X)+E(Y)

Preuve:

Soient X, Y et Z trois variables aléatoires définies sur Ω tel que Z = X + Y.

On a alors
$$E(X+Y) = E(Z) = \sum_{i=0}^{n} Z(\omega_i) P(\{\omega_i\}) = \sum_{i=0}^{n} (X+Y)(\omega_i) P(\{\omega_i\}).$$

On a par ailleurs $(X+Y)(\omega_i) = X(\omega_i) + Y(\omega_i).$

Donc
$$E(X + Y) = \sum_{i=0}^{n} (X)(\omega_i) P(\{\omega_i\}) + \sum_{i=0}^{n} Y(\omega_i) P(\{\omega_i\}).$$

D'où E(X + Y) = E(X) + E(Y) en identifiant les deux sommes précédentes à E(X) et E(Y).

Remarque : on peut généraliser ce théorème avec le théorème de transfert

« hors-programme »:si
$$f$$
 est continue alors : $E(f(X)) = \sum_{i=1}^{n} f(x_i) \cdot P(\{x_i\})$

Définition: Soit X et Y deux variables aléatoires définies sur un univers fini Ω on appelle la covariance du couple (X,Y) le réel issue de la formule Huygens : cov(X,Y)=E(X,Y)-E(X).E(Y)

Propriété: Soit la variable aléatoire Z = X + Y où X et Y suivent des lois distinctes alors la variance de Z est V(Z)=V(X)+V(Y)+2cov(X,Y)

Preuve: (hors-programme) on applique la formule de Koënig:

Pour toute variable aléatoire X: $V(X) = E(X^2) - E^2(X)$

Exercice: Calculer E(X+Y) dans l'étude en B)1) [réponse : E(X+Y)=14,06 ; E(X)=10,95 ; E(Y)=3,11]

3) Étude de la transformation affine Y=aX+b

Propriété: Soit X une variable aléatoire définie sur un univers fini Ω ; soit Y la variable obtenue par transformation affine Y = aX + b; alors on a:

$$E(Y) = a.E(X) + b$$
; $V(Y) = a^2.V(X)$; $\sigma(Y) = |a|.\sigma(X)$

Preuve: on a par définition $E(X) = \sum_{i=1}^{n} x_i . P(X = x_i)$; soient $a, b \in \mathbb{R}$

donc
$$a.E(X) = \sum_{i=1}^{n} (a.x_i).P(X=x_i)$$
 or $P(X=x_i) = P(aX=a.x_i)$

donc
$$a.E(X) = \sum_{i=1}^{n} (a.x_i).P(aX = a.x_i)$$
 de même $P(X = x_i) = P(X + b = x_i + b)$

donc
$$a.E(X)+b=\sum_{i=1}^{n}(a.x_i).P(aX=a.x_i)+b$$
 or $\sum_{i=1}^{n}P(X=x_i)=1$

donc
$$a.E(X)+b=\sum_{i=1}^{n}(a.x_i).P(aX=a.x_i)+b.\sum_{i=1}^{n}P(X=x_i)$$

donc
$$a.E(X)+b=\sum_{i=1}^{n}(a.x_i).P(aX+b=a.x_i+b)+b.\sum_{i=1}^{n}P(aX+b=a.x_i+b)$$

donc
$$a.E(X)+b=\sum_{i=1}^{n}(a.x_i+b).P(aX+b=a.x_i+b)$$

donc
$$a.E(X)+b=\sum_{i=1}^{n}(y_i).P(Y=y_i)=E(Y)$$

Exemple: On joue à un jeu, dans une foire, se déroulant en deux étapes.

- Dans la **phase 1**, on lance un dé équilibré à six faces. Si le résultat obtenu est 1 ou 6, on gagne 9 points. Sinon, on perd 6 points
- Dans la phase 2, on lance une pièce équilibrée. Si on obtient face, on gagne 6 points. Sinon, on perd 2 points.

Soit X la variable aléatoire du total de points obtenus. Calculons E(X). Soient X_1 la variable aléatoire du gain obtenu à la 1ère étape et X_2 la variable aléatoire du gain obtenu à la 2nde étape. Donc on obtient $X = X_1 + X_2$;

On étudie les lois de X_1 et X_2 ci-dessous

x_i	-6	9
$P(X_1 = x_i)$	$\frac{2}{3}$	$\frac{1}{3}$

x_i	-2	6
$P(X_2=x_i)$	$\frac{1}{2}$	$\frac{1}{2}$

ainsi
$$E(X_1) = -1$$
 et $E(X_2) = 2$

donc
$$E(X)=E(X_1)+E(X_2)=-1+2=1$$

C) Variables aléatoires indépendantes

1) Propriété de la variance

Propriété: Soient X et Y deux variables aléatoires indépendantes; alors on a : V(X+Y)=V(X)+V(Y) ou encore cov(X,Y)=0

Preuve: on sait que X et Y sont indépendantes donc $E(X.Y) = E(X) \times E(Y)$ donc cov(X,Y) = E(X.Y) - E(X).E(Y) = 0 donc V(X+Y) = V(X)+V(Y)

Exercice: Calculer V(X+Y) puis $\sigma(X+Y)$ dans le jeu de la « foire » on a $V(X) = 36 \times \frac{2}{3} + 81 \times \frac{1}{3} - (-1)^2 = 50$ et $V(Y) = 4 \times \frac{1}{2} + 36 \times \frac{1}{2} - (2)^2 = 16$ donc V(X+Y) = 66 donc $\sigma(X+Y) = \sqrt{66} \approx 8,12$

2) Somme d'un échantillon

Propriété : On considère un entier naturel $n \ge 1$ et $X_1, ... X_n$, n variables aléatoires définies sur Ω supposées indépendantes et identiquement distribuées. On note la somme de l'échantillon : $S_n = X_1 + X_2 + \cdots + X_n$ alors :

$$E(S_n)=n.E(X)$$
, $V(S_n)=n.V(X)$, $\sigma(S_n)=\sqrt{n}.\sigma(X)$

Preuve:
$$E(S_n) = E(X_1 + ... + X_n) = E(X_1) + ... + E(X_n) = n \cdot E(X)$$

 $V(S_n) = V(X_1 + ... + X_n) = V(X_1) + ... + V(X_n) = n \cdot V(X)$
donc $\sigma(S_n) = \sqrt{n \cdot V(X)} = \sqrt{n} \cdot \sqrt{V(X)} = \sqrt{n} \cdot \sigma(X)$

Exercice: Dans le jeu de « *yam's* » on lance 5 dés et on effectue la somme des points obtenus ; on a E(X)=3.5; $V(X)\simeq 2.92$ et $\sigma(X)\simeq 1.71$ donc $E(S_5)=5\times 3.5=17.5$; $V(S_5)=5\times 2.92=14.6$ et $\sigma(S_5)=\sqrt{5}\times 1.71=3.82$; obtient donc 17.5 $pts\pm 3.82$ pts

3) Moyenne d'un échantillon

Propriété: On considère un entier naturel $n \ge 1$ et $X_1, ... X_n$, n variables aléatoires définies sur Ω supposées indépendantes et identiquement distribuées.

On note la moyenne de l'échantillon : $M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$ alors :

$$E(M_n)=E(X)$$
, $V(M_n)=\frac{V(X)}{n}$, $\sigma(M_n)=\frac{\sigma(X)}{\sqrt{n}}$

Preuve:
$$E(M_n) = E(\frac{1}{n}S_n) = \frac{1}{n}E(S_n) = \frac{1}{n} \times nE(X) = E(X)$$

$$V(M_n) = V(\frac{1}{n}S_n) = \frac{1}{n^2}V(S_n) = \frac{1}{n^2} \times nV(X) = \frac{V(X)}{n}$$
et donc: $\sigma(M_n) = \sqrt{\frac{V(X)}{n}} = \frac{\sigma(X)}{\sqrt{n}}$ pour tout $n \in \mathbb{N}$

Exercice: On propose un jeu de gain d'argent de « tickets à gratter » suivant :

a	0	5	10	20	50	100
P(X = a)	0,6	0,2	0,1	0,06	0,03	0,01

On souhaite déterminer la moyenne des gains obtenus pour 10 tickets on a E(X)=5,7, $V(X)\simeq181,44$ et $\sigma(X)\simeq13,47$

donc
$$E(M_{10})=5,7$$
; $V(M_{10})=\frac{181,44}{10}=18,144$, $\sigma(M_{10})=\frac{13,47}{\sqrt{10}}\simeq4,26$

4) Application à la loi Binomiale

Propriété: Soient $X_1, ..., X_n$ des variables aléatoires suivantes toutes la même loi de Bernoulli B(p) avec $p \in [0,1]$ on pose : $S_n = X_1 + X_2 + \cdots + X_n$ alors on obtient :

- la variable S_n suit la loi Binomiale B(n, p)
- $E(S_n) = np$; $V(S_n) = np(1-p)$; $\sigma(S_n) = \sqrt{np(1-p)}$

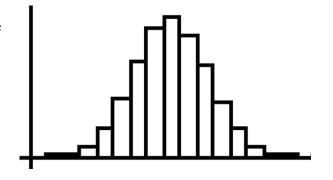
Exercice: On étudie la somme de 20 variables aléatoires de *Bernoulli* avec p=0,4; ainsi la variable aléatoire « somme » suit la loi *Binomiale* B(20;0,4); E(S)=8; V(S)=4,8 et $\sigma(S)=2,19$

on obtient le diagramme de la distribution de S :

On souhaite déterminer des *intervalles de fluctuation* de cette variable :

- $P(5,8 \le S \le 10,2)$
- $P(3,6 \le S \le 12,4)$
- $P(1,4 \le S \le 14,6)$

Comment calculer précisément ces 3 valeurs ?



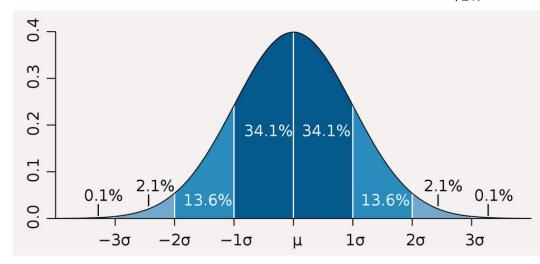
D) Concentration & loi des grands nombres

1) Les intervalles de Normalité

Théorème de Laplace-Gauss: On considère une variable aléatoire X suivant la loi Binomiale B(n,p) avec $n \ge 30$ et $p \in [0;1]$ avec $n p \ge 5$ et $n(1-p) \ge 5$; alors si on pose $E(X) = \mu = n p$ et $\sigma(X) = \sigma = \sqrt{n p(1-p)}$:

- $P(\mu \sigma \leq X \leq \mu + \sigma) = 0.6826 \simeq 0.6826$
- $P(\mu-2\sigma \leq X \leq \mu+2\sigma) = 0.9544 \simeq 0.95$
- $P(\mu-3\sigma \le X \le \mu+3\sigma) = 0.9974 \simeq 0.99$

<u>Rque</u>: Ces valeurs sont obtenues par la courbe de GAUSS: $f(x) = \frac{1}{\sqrt{2 \pi}} e^{-0.5x^2}$



on a: $\int_{-1}^{1} f(x) . dx \approx 0,6826$; $\int_{-2}^{2} f(x) . dx \approx 0,9544$; $\int_{-3}^{3} f(x) . dx \approx 0,9974$ Rque²: On dit alors que X suit une « Loi Normale » $N(\mu; \sigma)$

2) Inégalité de Markov

Propriété: Si X est une variable aléatoire discrète à valeurs positives et soit a un réel strictement positif, alors : $P(X \ge a) \le \frac{E(X)}{a}$

Preuve: Soit $A = \{x \in X(\Omega)/x \ge a\}$ et $B = \{x \in X(\Omega)/x < a\}$ alors $A \cap B = \emptyset$ et $A \cup B = X(\Omega)$ donc l'ensemble $\{A, B\}$ forme une partition de l'Univers donc on obtient les inégalités suivantes ;

$$E(X) = \sum_{k \in X(\Omega)} k \cdot P(X = k) = \sum_{k \in A} k \cdot P(X = k) + \sum_{k \in B} k \cdot P(X = k)$$

$$\geqslant \sum_{k \in A} k \cdot P(X = k) = \sum_{k \geqslant a} k \cdot P(X = k) \geqslant \sum_{k \geqslant a} a \cdot P(X = k)$$

$$= a \cdot \sum_{k \geqslant a} P(X = k) = a \cdot P(X \geqslant a) \quad \text{donc} \quad a \cdot P(X \geqslant a) \leqslant E(X) \quad [QED]$$

Propriété: Si X est une variable aléatoire discrète à valeurs positives et soit a un réel strictement positif, alors : $P(|X| \ge a) \le \frac{E(X^2)}{a^2}$

Preuve : on applique l'inégalité de Markov : $P(X^2 \ge a^2) \le \frac{E(X^2)}{a^2}$ or $X^2 \ge a^2$ équivaut à $|X| \ge a$ donc on déduit : $P(|X| \ge a) \le \frac{E(X^2)}{a^2}$

Exercice: Le nombre de pièces sortant d'une usine en une journée est une variable aléatoire d'espérance 50. On veut estimer la probabilité que la production d'un jour donné dépasse 75 pièces.

On a: $P(X \ge 75) \le \frac{E(X)}{75}$ donc $P(X \ge 75) \le \frac{50}{75} = \frac{2}{3}$ soit environ 67 % En fait cette probabilité est trop grande et ne donne pas assez d'informations

3) Inégalité de Bienaymé-Tchebychev

Propriété: Si X est une variable aléatoire discrète à valeurs positives et soit δ un réel strictement positif, alors : $P(|X-E(X)| \ge \delta) \le \frac{V(X)}{\delta^2}$

Preuve : on applique la 2nde inégalité de Markov :

$$P(|X-E(X)| \ge a) \le \frac{E((X-E(X))^2)}{a^2}$$
 et $(X-E(X))^2 = X^2 - 2X \cdot E(X) + E^2(X)$

donc
$$E((X-E(X))^2)=E(X^2)-E^2(X)=V(X)$$
 donc $P(|X-E(X)| \ge \delta) \le \frac{V(X)}{\delta^2}$

Exercice: On reprend l'exercice précédent; Que peut-on dire de plus sur cette probabilité si on sait que la variance de la production quotidienne est 25?

$$P(X \ge 75) \le P(|X - 50| \ge 25) \le \frac{V(X)}{25^2}$$
 donc $P(X \ge 75) \le \frac{25}{625} = \frac{1}{25} = 0.04$

Soit une estimation plus précise de 4 %

Cela est bien sûr logique puisque l'on connaît maintenant 2 paramètres sur X

Exercice: Soit une variable aléatoire X qui suit la loi binomiale de paramètres n=20 et p=0,4; on souhaite comparer les valeurs de normalités de Gauss on sait que : E(X)=8; V(X)=4,8; $\sigma(X)\approx 2,2$

si
$$\delta = \sigma(X) = 2,2$$
 alors $P(|X-8| \ge 2,2) \le \frac{4,8}{2,2^2} = 0,99$

si
$$\delta = 2 \sigma(X) = 4,4$$
 alors $P(|X-8| \ge 4,4) \le \frac{4,8}{4,4^2} = 0,25$

si
$$\delta = 3 \sigma(X) = 6,6$$
 alors $P(|X-8| \ge 6,6) \le \frac{4,8}{6.6^2} = 0,11$

si
$$\delta = 4 \sigma(X) = 8.8$$
 alors $P(|X - 8| \ge 8.8) \le \frac{4.8}{8.8^2} = 0.06$

<u>Conclusion</u>; l'inégalité de <u>Bienaymé-Tchebychev</u> est très intéressante pour observer les valeurs "extrêmes" c'est-à-dire très éloignées de la moyenne

<u>Rque</u>: On peut modéliser le problème à l'aide d'un script en langage PYTHON Soit une variable aléatoire X qui suit la loi binomiale de paramètres n = 20 et p = 0, 1.

```
1 import random as rd
2 import math
3 def simulX():
   a=0
   for expe in range (20):
     if rd.randint(1,100)<=10:
       a=a+1
   return a
9 def proba(N):
   echant=[simulX() for i in range (N)]
   c=0
   d=2*math.sqrt(1.8)
   for e in echant:
     if abs(e-2)>=d:
       c=c+1
   return c/N
```

on a:
$$E(X)=2$$
; $V(X)=1.8$ et $\sigma(X)=\sqrt{1.8}\approx 1.34$

On constate qu'un écart à E(X) supérieur à $2\sigma(X)$ est de probabilité souvent inférieur à 0, 05 alors que l'inégalité de *Bienaymé-Tchebytchev* nous donne pour cette même probabilité une majoration par 0,25.

$$P(|X-2| \ge 2\sqrt{1},8) \le \frac{1,8}{4 \times 1.8} = 0,25$$

l'inégalité est donc loin d'être optimale.

4) Inégalité de concentration

Propriété: Soit une variable aléatoire moyenne M_n d'un échantillon de taille n de la variable aléatoire X. Pour tout réel strictement positif δ , on a

$$P(|M_n - E(X)| \ge \delta) \le \frac{V(X)}{n \cdot \delta^2}$$

Exercice: Soit une variable aléatoire X qui suit la loi de Bernoulli de paramètre p=0,2. On considère un échantillon de n variablesaléatoires suivant la loi de X. On appelle M_n la variable aléatoire moyenne associée à cet échantillon. Déterminer la taille n de l'échantillon pour que la condition $P(0,03 < M_n < 0,37) \ge 0,95$ soit satisfaite; on rappelle que $E(M_n) = E(X) = 0,2$

la condition donne : $P(|M_n - 0.2| > 0.17) \le 0.05$ donc $\frac{V(X)}{n.\delta^2} \le 0.05$ avec V(X) = p(1-p) = 0.16 et $\delta = 0.17$ donc $n \ge 110.73$ soit $n \ge 111$

5) Loi des grands nombres

Propriété: Soit une variable aléatoire moyenne M_n d'un échantillon de taille n de la variable aléatoire X. Pour tout réel strictement positif δ , on a $\lim_{n\to+\infty} P(|M_n-E(X)| \ge \delta) = 0$

<u>Rque</u>: La loi des grands nombres traduit le fait que plus la taille de l'échantillon d'une variable aléatoire X est grande, plus l'écart entre la moyenne de cet échantillon et l'espérance de la variable aléatoire X est faible

Exercice: On considère la variable aléatoire X qui prend ses valeurs de manière équiprobable parmi les entiers 1 à 5. On nomme M_n la variable aléatoire moyenne d'un échantillon de taille n de la variable aléatoire X

Éditer un script PYTHON afin de simuler et vérifier la "loi des grands nombres"